Part three: Volumetric
By Tom Carnegie
Henry Ford said that the top speed of Model T Fords was 45 miles per hour. A lot of them now days are hard pressed to achieve that speed. Sometimes after someone has taken a ride in my car, they will ask me: "How do you make your T go so fast?" My stock, off-the-cuff reply is that there are only two things to make a T go fast - compression and aspiration. This is essentially true, but is an oversimplification. There are really THREE things! The three things are: 1. Mechanical efficiency 2. Thermodynamic efficiency and 3. Volumetric efficiency. Last newsletter we talked about thermodynamic efficiency. This time we will talk about volumetric efficiency.
I think that obtaining maximum volumetric efficiency may be somewhat akin to voodoo. It is hard to know exactly what might improve it or why. What improves volumetric efficiency at one RPM range may hurt it in another. Rules of thumb that hold true for most engines might not correlate or even apply to the model T motor. It seems that since volumetric efficiency is simply a matter of pumping as much fuel mixture into the combustion chamber at any given speed, that it would be a simple matter to rotate your motor with an external power source, and note the compression at various rpm's. Then you could manipulate the various parameters until you achieved the desired results. Unfortunately this method may give you a starting point, but it doesn't take into consideration some very important variables such as heat, combustion and scavenging. We will talk more about this later. For now, let's talk about the parameters referred to above.
Some of the parameters, such as carburetor air flow and porting, are not adjustable within the confines of the Montana 500. With the intake manifold you have several choices. Examples are the early dogleg aluminum manifold, the later non-dogleg aluminum manifold, the cast iron manifold that is shaped like the aluminum manifold, and the typical 1917 through 1926 style cast iron manifold. Of these, the non-dogleg aluminum type flows the most air. This is according to studies done by Chaffin's. Of course in the Montana 500 we have to contend with the restrictor plate which surely limits the efficacy of the high flow manifold. In fact, some people contend that because of the restrictor plate, it may be better to run with a smaller manifold. We will go into this in more detail later. Once the fuel mixture makes it past the manifolds and the ports, it encounters the intake valve.
An important parameter is when the intake valve opens in relation to the piston position. Intuitively, one may think that the best time to open the intake valve may be when the piston is at top dead center. This is essentially true, but as with most volumetric issues there is more to the story. There are at least two schools of thought on this issue. I'll talk about the second school later. One school says that it may be good to open the intake valve slightly after TDC. The model T motor has two cylinders sharing each intake port. Number two cylinder fires immediately after number one, and number three fires right after number four. Since these two pairs of cylinders share intake ports, cylinders number two and three get starved slightly because the manifold leg that feeds these cylinders doesn't have time to refill before the next cylinder needs a charge. I believe that it is not just a matter of getting less air-fuel mixture as if the throttle is slightly closed. It is also a matter of the air not being
able to absorb the same amount of fuel as the previous charge. You can see evidence of this by observing your spark plugs. Number one and four sparkplugs are almost always blacker than two and three. By opening the intake valve later the theory goes, each cylinder gets an equal charge. If the charge is slightly smaller than could be obtained otherwise, this is supposedly offset by the fact that you get better combustion if all the cylinders have the same air fuel mixture, and the engine runs better with four more equal explosions. Steve Coniff has done some experiments along these lines and found that the exhaust temperature also is more consistent between the four cylinders when the intake valve is opened later. Opening the intake valve slightly later is somewhat less efficient than opening it at TDC, but not as much as you might think. This is because the movement of the piston past TDC is not totally wasted. As the piston moves past TDC it begins building a vacuum in the cylinder. What changes is the
amount of time available to fill the cylinder, which could be a problem, as we'll discuss later. Going hand in glove with the intake opening timing is the exhaust closing timing. Let's follow the cycles through to the time that the exhaust valve closes.
After the fuel mixture is drawn in it is compressed then exploded. The explosion drives the piston down and then the piston comes up and drives out the spent gasses. Using the same logic as above, you might think that the very best time to close the exhaust valve would be when the piston is at top dead center. This is exactly where the stock T cam is supposed to close the exhaust valve. Usually on high-speed engines the exhaust valve is closed sometime after TDC. This is to allow more time for the exhaust gasses to escape. This begs the question of how can the exhaust gasses continue to escape as the piston is heading down? Wouldn't it tend to try to suck the spent gasses back into the cylinder? The answer in a word is "no". The chief reason for this is that the gasses in the exhaust system have mass, and since they have mass, they have momentum. This momentum tends to continue to pull the gasses out of the cylinder even after the piston has stopped pumping. This brings up another important subject.
Scavenging.
For illustration's sake, imagine the air-fuel mixture that is drawn into the cylinder to be clear, and the spent exhaust gasses to be black. The piston goes down and draws in a charge of clear mixture. It is compressed then exploded, and then the black exhaust is pumped out. When the piston is clear to the top, you still have a combustion chamber full of black exhaust. When the next clear charge is drawn in, it is going to mix with this black exhaust which will weaken it. There is a way to slightly overcome this problem. The method is to make the exhaust gasses pull a fresh charge into the combustion chamber. Holding the intake and the exhaust open at the same time does this. This is the first school of thought mentioned above.
(end of technical article)